
Fall 2018 Math 566:17 1/3

Minimum Cuts in Unidrected Graphs

Recall: δ(S) is the set of edges with exactly one endpoint in S and we also write u(δ(S)) =
∑

e∈δ(S) u(e).
Note: δ(S) = δ(V (G) \ S).

Minimum Cut Problem:
Input: Graph G = (V,E) and cost function u : E → R+. (cost for minimizing)
Output: Global Minimum Cut. That is S ⊂ V which minimizes u(δ(S))

1: Find a minimum cut in the following graph:

g f

e

a

b

d

c

h

6

3

2

3 5

2

1

5
2

4

2

3

Notation:

λ(G) is the cost of minimum cut of G, i.e.

λ(G) = min
∅6=S⊂V (G)

∑
e∈δ(S)

u(e)

λ(G; v, w) is the cost of minimum (v, w)-cut of G, i.e.

λ(G; v, w) = min
v∈S⊆V (G)\{w}

∑
e∈δ(S)

u(e)

2: Find an algorithm for Minimum Cut Problem using network flows.

Solution: Fix any vertex, find a maximum flow to every other vertex, and take the
minimum. This max-flow gives a globally minimum cut. Why this works?

Node Identification Algorithm:

Let Guv be a graph obtained from G by identifying u and v (delete loops, keep parallel edges).

Main idea:

λ(G) = min(λ(Gvw), λ(G; v, w)) (1)

3: Explain (1).

Solution: A minimum cut in G either separates u from v or does not.

How can we make λ(G; v, w) easy to calculate? By cleverly picking v and w?

A legal ordering of vertices starting at v1 is v1, v2, . . . , vn if for all i, vi has the largest cost of edges joining
it to v1, . . . , vi−1.

cbna by Bernard Lidický

https://creativecommons.org/licenses/by-nc-sa/4.0/


Fall 2018 Math 566:17 2/3

4: Find a legal ordering starting with vertex a of the graph from the first exercise (redrawn below)

g f

e

a

b

d

c

h

6

3

2

3 5

2

1

5
2

4

2

3

Solution: a, b, c, d, e, h, g, f

Main theorem: If v1, . . . , vn is a legal ordering of G, then δ(vn) is a minimum vn, vn−1 cut of G.

Node Identification Algorithm:

1. M :=∞ and A undefined

2. while G has more than 1 vertex

3. Find a legal ordering v1, v2, . . . , vn of G

4. If u(δ(vn)) < M

5. M := u(δ(vn)) and A := δ(vn)

6. G := Gvnvn−1

7. return A

5: Run the node identification algorithm on the graph from the previous exercise.

Solution: Many figures needed here...

cbna by Bernard Lidický

https://creativecommons.org/licenses/by-nc-sa/4.0/


Fall 2018 Math 566:17 3/3

Random Contraction Algorithm:

1. while G has more than 2 vertices

2. Choose an edge e of G with probability u(e)/u(E)

3. G := Gvw, where e = vw

4. return the unique cut in G.

6: Let A be a minimum cut of an n-vertex graph G. Show that the random contraction algorithm returns A
with probability at least 2/(n(n− 1)).
What is the probability that a random cut in G is a minimum cut? (The algorithm does something.)

Solution: Let u(A) =
∑

e∈A u(A). Then

P (edge of A is picked for contraction) =
u(A)

u(E)

Notice that A is the minimum cut in G. Hence u(A) ≤ u(C) for any other cut.
In particular, we consider cuts around each vertex. A cut around vertex v has cost∑

e∈δ(v) u(e). The average cost of a cut around one vertex is∑
e∈δ(v) u(e)

n
=

2
∑

e∈E u(e)

n
=

2u(E)

n
.

Then picking an edge from A has lower probability than picking an edge from an
average cut around a vertex

u(A)

u(E)
≤ 2u(E)

n · u(E)
=

2

n
.

After i rounds of the algorithm, G has n− i edges and we get

u(A)

u(E)
≤ 2

n− i
.

Now the probability that no edge of A was choses is at least

1− 2

n− i
=

n− i− 2

n− i
The algorithm is running for rounds with i = 0, . . . , n−2 and we get that the probability
no edge of A is ever chosen is at least

n− 2

n
· n− 3

n− 1
· n− 4

n− 2
· · · 3

5
· 2

4
· 1

3
=

2

n(n− 1)
.

7: Let k ∈ N. Show that the probability that the random contraction algorithm does not return A in one of
kn2 runs is at most e−2k.

Solution: We use the estimate from previous round kn2 times.(
1− 2

n(n− 1)

)kn2
≤
(

1− 2

n2

)kn2
≤
(
e−

2
n2

)kn2

= e−2k.

cbna by Bernard Lidický

https://creativecommons.org/licenses/by-nc-sa/4.0/

